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Abstract

We describe the action of power operations on the p-completed cooperation algebras K∨
0 K =

K0(K)p̂ for K-theory at a prime p, and K∨
0 KO = K0(KO)2̂. These results are used to identify

the K(1)-local homotopy type of some E∞ ring spectra obtained by killing elements of Hopf
invariant 1.
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Introduction

Power operations in suitably completed (co)homology theories have been studied and used by
several authors, for example Rezk [29, 30, 31]; the paper of Barthel and Frankland [11] building on
work of McClure [13] provides a convenient account of this, in particular for the case of p-complete
K-theory. An important source on related mathematics is the article by Hopkins [18], and indeed
the volume [15] contains much that the reader may find helpful.

In the present paper we describe the action of the θ-operator (which we follow [11] in denoting
by Q) on the p-completed cooperation algebra

K∨0 K = K0(K)p̂ = π0(LK(1)(K ∧K)),

where K = KU . We expect this to be of use in investigating the θ-action and its interaction with
the K∨∗ (K)-coaction on K∨∗ (A) for any E∞ ring spectrum A. We also give some results on K∨0 (KO)
when p = 2 and on K∨∗ (PX), where PX denotes the free commutative S-algebra on a spectrum X
introduced in [16].

It is likely that some of our results are known to experts, but we have not found a published
source, so we feel it worthwhile writing them down.

An obvious related problem to investigate is that of describing the actions of power operations
on K∨0 (BU) or equivalently on K∨0 (MU) (these actions correspond under the Thom isomorphism).
The E∞ orientation of [22] induces a morphism of θ-algebras K∨0 (MU) → K∨0 (K) but this is
not injective on the image of the Hopf algebra primitives PrK∨0 (BU), and this seems to make
the determination of the action on primitives more delicate then in the case of ordinary mod p
homology as carried out by Kochman [23]. We may return to this in future work.
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Conventions and notation: We will work with E∞ ring spectra in the setting of commutative
S-algebras of [16] and use these terms interchangeably. We will assume that KU and KO have
their standard E∞ ring structures as produced in [10] for example.

Throughout, p will be a fixed prime and K = KU(p) will denote the p-local 2-periodic complex
K-theory ring spectrum; we will also denote the p-adic completion of K by Kp̂ = KUp̂. We will
often denote (co)homology without brackets where appropriate by setting K∗X = K∗(X) and
K∗X = K∗(X) for example, but include brackets where it improves readability.

1 L-complete modules

We will be working with p-complete K-theory for a prime p, and this takes values in the category
of L-complete graded modules for the local ring Z(p). The utility of working with such a category
originated in work of Greenlees & May [17] and was made explicit by Hovey & Strickland [21]. The
reader is also referred to Barthel & Frankland [11] for a more recent account.

A fundamental observations is that for any spectrum each p-completed K-theory group

K∨nX = πn(LK(1)(K ∧X))

is L-complete (with respect to Z(p)), i.e., K∨nX
∼= L0K

∨
nX where Ls (s > 0) is the left derived

functor of p-adic completion on the category of Z(p)-modules. In fact Ls is trivial when s > 1.
When M is Z(p)-free or flat then L0M = Mp̂ and L1M = 0 by [6]. More generally, L∗M can

calculated by taking a free resolution

0←M ← F0 ← F1 ← 0

and taking homology of the induced complex

0← (F0)p̂ ← (F1)p̂ ← 0.

For M = Kn(X) this allows us to induce up the effect of a natural transformation θ : Kn(−) →
Kn(−). To see how to do this we need some background.

Recall that a ring spectrum E satisfies the Adams condition of [1] if it can be written as colimit
E = colimαEα of dualisable spectra Eα. This condition ensures the existence of suitable resolutions
for constructing Universal Coefficient spectral sequences.

In particular, KU and KO satisfy the Adams condition, see [1, proposition 13.4]. The proof
there uses even suspensions of skeleta of BU and BSp (with cells in even degrees); in fact these
can be replaced by suspensions of skeleta of CP∞ and HP∞ by results of [3].

Then the K∗-module K∗(X) can be resolved using the following procedure due to Adams,
see [1, lemma 13.7]. Take a set of K∗-module generators of K∗(X) = colimα π∗(Kα ∧X) and form
their adjoint maps f : Σn(f)DEα → X so that together these induce an epimorphism⊕

f

K∗(DEα) = K∗

(∨
f

DEα

)
ε−→ K∗X.

Here each K∗(DEα) is a finitely generated free K∗-module and by work of Hovey [19, theorem 3.3],

K∨∗

(∨
f

DEα

)
∼=
(⊕

f

K∗(DEα)

)
p̂

.
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which is pro-free. As K∗ is a graded principal ideal domain, ker ε is also a free K∗-module, so
L∗K∗(X) can be calculated using the complex

0← K∨∗

(∨
f

DEα

)
← (ker ε)p̂ ← 0.

Notice also that the spectral sequence of [20, corollary 3.2] collapses to give a collection of short
exact sequences

0→ L0Kn(X)→ K∨∗ (X)→ L1Kn−1(X)→ 0.

2 K-theory completed at a prime and power operations

We first recall some standard facts about the rings of p-local integers Z(p) and p-adic integers Zp.
By definition, if we give Z(p) and Zp the p-adic norm topologies then Z(p) ⊆ Zp is a dense subring.
The residue fields of Z(p) and Zp both agree with the finite field Fp which we give the discrete
topology. There is a pullback square of topological multiplicative monoids

Z×(p)
� � //

����

Z(p)

����
F×p
� � // Fp

and on p-adic completion this becomes the pullback square

Z×p
� � //

����

Zp

����
F×p
� � // Fp

so Z×p is the completion of Z×(p) with respect to the p-adic norm.

It is known from [3,2, 4, 5] that

K0K ∼= {f(w) ∈ Q[w,w−1] : f(Z×(p)) ⊆ Z(p)},

and K0K is a free Z(p)-module. Since Z×(p) is a dense subgroup of Z×p , we may interpret Laurent

polynomials as continuous functions on Z×p and obtain

K0K ∼= {f(w) ∈ Q[w,w−1] : f(Z×p ) ⊆ Zp} ⊆ Cont(Z×p ,Zp),

where the latter is the p-adic Banach algebra of continuous maps Z×p → Zp equipped with the
operator norm; it is known that this subring of Cont(Z×p ,Zp) is dense. It follows that

K∨0 K = π0((K ∧K)p̂) = (K0K)p̂,

where the p-adic topology involved in the completion agrees with p-adic norm topology inherited
from Cont(Z×p ,Zp). Therefore there is an isomorphism of p-adic Banach algebras

K∨0 K
∼= Cont(Z×p ,Zp). (2.1)
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For a ∈ Z×(p), the stable Adams operation

ψa ∈ K0K ∼= HomZ(p)
(K0K,Z(p))

is determined by the pairing 〈−|−〉 : K0K ⊗K0K → Z(p), i.e.,

〈ψa|f(w)〉 = f(a).

This extends to a continuous pairing given by

〈ψa|f〉 = f(a)

if a ∈ Z×p and f ∈ Cont(Z×p ,Zp); here ψa is best viewed as an element of the pro-group ring

Zp[[Z×p ]] ∼= (K0K)p̂

For more details on K0(K) and Cont(Z×p ,Zp), see [10, section 3]; for a broader overview of the
connections with p-adic analysis see [14].

We also recall that K0K is a bicommutative Z(p)-Hopf algebra with coproduct Ψ given by

Ψ(f(w)) = f(w ⊗ w)

and antipode χ given by
χ(f(w)) = f(w−1).

Using the linear pairing 〈−|−〉 we can obtain a left action of K0K on K0K; for α ∈ K0K, we write
αf(w) for this. In particular, if a ∈ Z×(p) this coincides with the action of the Adams operation ψa,

ψaf(w) = f(a−1w).

The reason for the inverse is that we are using the standard left action of the dual of the Hopf
algebra K0K defined by

αx =
∑
i

〈α(χ(x′i))|x′′i 〉 ,

where Ψx =
∑
i x
′
i ⊗ x′′i , Ψ(g(w)) = g(w ⊗ w) and χ(g(w)) = g(w−1).

In the p-complete setting, (stable) Adams operations are indexed by the p-adic units Z×p ⊆ Zp.
It follows that there is a continuous action

Z×p ×Kr(X)p̂ → Kr(X)p̂ ; (α, x) 7→ ψα(x).

We use notation from [13, chapter IX] and the more recent [11]. For an E∞ ring spectrum A
there is a natural power operation Q: K∨0 A→ K∨0 A (sometimes also called θ) satisfying properties
that can be deduced from those listed in [13, theorem IX.3.3] for the homology theories K∗(−; pr)
with coefficients, and are discussed in [11, section 6], although the version there is for Z/2-graded
K-theory. However, as we are mainly interested in the case of K∨∗K which is concentrated in even
degrees, we work mostly with K∨0 (−) but sometimes need to relate this to K∨2n(−) for an integer n.
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The operation Q is neither additive nor multiplicative, but it satisfies the identities

Q(x+ y) = Qx+ Q y +
1

p

(
xp + yp − (x+ y)p

)
, (2.2a)

Q(xy) = yp Qx+ xp Q y + pQxQ y, (2.2b)

or equivalently the operation Q̂ defined by

Q̂x = pQx+ xp

is additive and multiplicative,

Q̂(x+ y) = Q̂x+ Q̂ y,

Q̂(xy) = Q̂x Q̂ y.

We also have Q 1 = 0, hence Q̂ 1 = 1 and Q̂ is a (unital) ring homomorphism. Finally, if a ∈ Z(p)

and u ∈ Z×(p),

Q(ax) = aQ(x) +
(a− ap)

p
xp,

Q̂(ax) = a Q̂x,

ψu Q(x) = Q(ψux).

When K∨r (A) = Kr(A)p̂, the operations Q and Q̂ are continuous with respect to the p-adic topology.
This allows us to extend these identities to the case where α ∈ Z×p ,

Q(αx) = αQ(x) +
(α− αp)

p
xp,

ψα Q(x) = Q(ψαx),

Q̂(αx) = α Q̂x,

ψα Q̂(x) = Q̂(ψαx).

Suppose that X is an infinite loop space (and so Σ∞+ X is an E∞ ring spectrum). If K0(Σ∞+ X) is
Z(p)-free so that K∨0 (Σ∞+ X) = K0(Σ∞+ X)p̂ is pro-free, the diagonal map on X induces a coalgebra

structure on K0(Σ∞+ X) and a topological coalgebra structure on K∨0 (Σ∞+ X). In that situation, Q̂

is a coalgebra morphism; in particular, Q̂ preserves coalgebra primitives.
We also mention a useful fact about Adams operations. Let α ∈ Z×p and suppose that ψαx =

αdx. Since ψα is a ring homomorphism,

ψα Q̂x = pQ(ψαx) + (ψαx)p

= pQ(αdx) + (αdx)p

= Q̂(αdx),

giving the identity
ψα Q̂x = αd Q̂x.
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3 Power operations on K∨
0 K and on K∨

0 KO for p = 2

For the case of K∨0 K we continue to assume that p is an arbitrary prime.
We begin with the action of Q on the basic element w ∈ K0K ⊆ K∨0 K. For a ∈ Z×(p),

ψa Q(w) = Q(ψaw) = Q(a−1w).

We write Q(w) = f0(w) where f0 ∈ Cont(Z×p ,Zp) is the function given by x 7→ f0(x), so we are
identifying w with the inclusion function Z×p → Zp under the isomorphism (2.1).

By [13, theorem IX.3.3(vi)], for k ∈ Z,

Q(kw) = kQ(w) +
(k − kp)

p
wp,

so as Z×(p) ⊆ Z×p is dense, this defines a continuous function

Z×p × Z×p → Zp; (x, y) 7→ xf0(y) +
(x− xp)

p
yp.

Taking y = 1, this restricts to the continuous function

Z×p → Zp; x 7→ xf0(1) +
(x− xp)

p
,

and as f0(1) = 0, we have

f0(x) =
(x− xp)

p
.

Hence we have

Qw = f0(w) =
(w − wp)

p
. (3.1)

For n ∈ N, by [13, theorem IX.3.3(vii)]

Q(wn+1) = wp Q(wn) + wnp Q(w) + pQ(wn) Q(w)

and an easy induction gives the general formula

Q(wn) =
(wn − wnp)

p

for all natural numbers. We also have

0 = Q(1) = Q(wnw−n) = wnp Q(w−n) + w−np Q(wn) + pQ(wn) Q(w−n)

and so

Q(w−n) =
w−n − w−np

p
.

Therefore for all n ∈ Z,

Q(wn) =
wn − wnp

p
. (3.2)
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The operation Q̂ is given by
Q̂(wn) = Q̂(w)n,

so for any g ∈ Cont(Z×p ,Zp) we have

Q̂(g(w)) = g(Q̂w) = g(w),

and therefore

Q(g(w)) =
1

p
(g(w)− g(w)p).

This shows that the sequence of polynomial functions defined recursively by θ0(w) = w and for
n > 1,

θn(w) =
1

p
(θn−1(w)− θn−1(w)p),

is also given by
θn(w) = Q(θn−1(w)). (3.3)

It is known that a (topological) Zp-basis for K∨0 K can be made using monomials in the θn(w),
see [4] for example. One interpretation of what we have shown is the following result which seems
to have been long known to Mike Hopkins et al, but we do not know a published source; a referee
has drawn our attention to Mark Behrens’ article [15, chapter 12, section 6] which contains a
related moduli-theoretic interpretation of such θ-algebras which may lead to similar results. We
interpret the operation Q as a realisation of an action of θ and therefore K∨0 K becomes a p-complete
Zp-θ-algebra [12,11].

Proposition 3.1. The p-complete Zp-θ-algebra K∨0 K is generated by the element w. Hence K∨0 K
is a quotient of the free p-complete Zp-θ-algebra K∨0 (PS0), namely

K∨0 K
∼= Zp[θs(w) : s > 0]p̂

/
((θs(w)p − θs(w) + pθs+1(w) : s > 0)).

Here the quotient is taken with respect to the p-adic closure of the ideal generated by the stated
elements, indicated by the use of ((−)) rather than (−). This shows that apart from the p-adic
completion involved, K∨0 K is a colimit of Artin-Schreier extensions of the form

Zp[X]/(Xp −X + pa)

whose mod p reduction is the étale Fp-algebra

Fp[X]/(Xp −X) ∼=
∏

06r6p−1

Fp.

Our discussion also shows that the antipode of K∨0 (K), χ satisfies

χQ = Qχ. (3.4)

Suppose that A is an E∞ ring spectrum (or a K(1)-local E∞ ring spectrum). Then we may
consider K∨• (A) where K∨• (−) denotes the Z/2-graded p-complete theory. The power operation Q
intertwines with the coaction as described in [8, (2.5)], giving

Ψ Qx = Q(Ψx) (3.5)
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since the antipode χ satisfies (3.4) and we have a simpler situation compared to ordinary mod p
homology where the dual Steenrod algebra supports two distinct Dyer-Lashof structures related by
the antipode.

We now give a brief description of the modification required to describe power operations in
K∨0 KO at the prime p = 2. For KO∗KO(2), results of [2, 3] give

• for all m ∈ Z, KOmKO(2)
∼= KOm ⊗KO0KO(2);

• KO0KO(2) is a countable free Z(2)-module;

• KO0KO(2) = {f(w) ∈ Q[w2, w−2] : f(Z×2 ) ⊆ Z2}.

Passing to K∨0 KO, recalling that the squaring homomorphism

Z×2 = {±1} × (1 + 4Z2) −→ 1 + 8Z2 ⊆ Z×2

is surjective, the natural E∞ morphism KO → KU induces a monomorphism of 2-complete θ-
algebras K∨0 (KO) → K∨0 (K) coinciding with the inclusion of the continuous functions factoring
through (−)2.

It is clear that Q restricts to K∨0 KO and is given by

Q(f) =
(f − f2)

2
.

The following elements defined inductively provide a topological basis for K∨0 KO:

Θ0(w) =
1− w2

8
, Θn(w) =

Θn−1(w)−Θn−1(w)2

2
(n > 1).

Then the distinct monomials Θ0(w)ε0Θ1(w)ε1 · · ·Θ`(w)ε` with εj = 0, 1 form a topological basis.
Here is the analogue of Proposition 3.1.

Proposition 3.2. The 2-complete Z2-θ-algebra K∨0 KO is a quotient of the free 2-complete Z2-θ-
algebra generated by the element Θ0(w), i.e.,

K∨0 KO
∼= Z2[Θs(w) : s > 0]2̂ / ((Θs(w)2 −Θs(x) + 2Θs+1(x) : s > 0)).

4 The completed K-theory of free algebras

In this section we will describe K∨0 (PX), at least for spectra X for which K∨0 X is suitably restricted.
For our purposes, it will suffice to assume that X is a CW spectrum with only finitely many even
dimensional cells. It will be useful to examine how K∨0 (PX) behaves for such complexes.

Suppose that the (n−1)-skeleton X [n−1] of X is defined. Then the n-skeleton X [n] is a pushout
defined by a diagram of the form ∨

i S
n−1 //

��
R

∨
iD

n

��
X [n−1] // X [n]
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for a finite wedge of spheres
∨
i S

n−1. Similarly there is a pushout diagram of commutative S-
algebras

P(
∨
i S

n−1) //

��
R

P(
∨
iD

n)

��
P(X [n−1]) // P(X [n])

so (PX)〈n〉 = P(X [n]) is the E∞ n-skeleton of the CW commutative S-algebra PX.
If the cells of X are all even dimensional, we only encounter pushout diagrams of the form

P(
∨
i S

2m−1) //

��
R

P(
∨
iD

2m)

��
(PX)〈2m−2〉 // (PX)〈2m〉

where
(PX)〈2m〉 ∼= (PX)〈2m−2〉 ∧P(

∨
i S

2m−1) P(
∨
i

D2m).

To calculate K∨∗ ((PX)〈2m〉) we may use a Künneth spectral sequence of the form

E2
s,t = Tor

K∨∗ (P(
∨

i S
2m−1))

s,t (K∨∗ ((PX)〈2m−2〉),K∗) =⇒ K∨s+t((PX)〈2m〉), (4.1)

where the internal t grading is in Z/2, i.e., it is an integer modulo 2. This is essentially described
in [16], but we will require its multiplicativity, and also the fact that it inherits an action of power
operations. The latter structure is constructed in a similar fashion to the mod p Dyer-Lashof
operations in [25].

Proposition 4.1. The spectral sequence (4.1) collapses at E2 to give

K∨s+t((PX)〈2m〉) = K∨s+t((PX)〈2m−2〉)[Qs xi : s > 0, i ]p̂,

where each xi is in even degree.

Proof. Recall from [11] that

K∨∗

(
P
(∨

i

S2m−1

))
= Λ(zi)p̂,

the p-completed exterior algebra on odd degree generators zi ∈ K∨1 (P(
∨
i S

2m−1)), each of which
originates on a wedge summand.

The E2-term is a divided power algebra over K∨∗ ((PX)〈2m−2〉) on generators of bidegree (1, 1),
each represented in the cobar complex by [Qs zi]. We will write γr([Q

s zi]) for the r-th divided
power of this element and recall that the particular elements γ(r)([Q

s zi]) = γpr ([Qs zi]) generate
the algebra subject to relations of the form

γ(r)([Q
s zi])

p =

(
pr+1

pr, . . . , pr

)
γ(r+1)([Q

s zi]),
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where the multinomial coefficient satisfies(
pr+1

pr, . . . , pr

)
= pt

for some integer t not divisble by p. For degree reasons there can only be trivial differentials, so
the only issue still to be resolved is that of the multiplicative structure.

We follow a line of argument similar to that of [25]. In the spectral sequence we have

Q[zi] = [Q zi],

so it only remains to relate this element to a p-th power in the target of the spectral sequence.
By [13, chapter IX, theorem 3.3(viii)], if Zi is represented by [zi], then Zpi + pQZi is represented
by [Q zi], therefore Zpi is represented by

(1− p)[Q̂ zi] ≡ [Q̂ zi] (mod p).

It follows that each such Zi has non-trivial p-th power also represented in the 1-line. By induction
this can be extended to show that each γ(r)([Q

s zi]) represents an element with non-trivial p-th
power. Finally, an easy argument shows that the target is a completed polynomial algebra as
stated. q.e.d.

It is also useful to generalise this to the case of a CW spectrum Y with chosen 0-cell S0 → Y ,
where S0 ∼−→ S is the functorial cofibrant replacement of S in the model category of S-modules. We
may then consider the reduced free commutative S-algebras P̃Y which is defined as the homotopy
pushout of the diagram of solid arrows

PS0 //

��
R

PY

��
S // P̃Y

where the vertical map is the canonical multiplicative extension of S0 → S; see [7] for more on this
construction. As a particular case, we can consider a map f : S2m−1 → S0 and form its mapping
cone Cf = S0 ∪f D2m. Then take S//f = P̃Cf to be a homotopy pushout for the diagram

PS0 //

��
R

PCf

��
S // S//f

and there is an associated Künneth spectral sequence

E2
s,t = TorK

∨
∗ (PS0)(K∗,K

∨
∗ (PCf )) =⇒ K∨s+t(S//f). (4.2)

It is easily seen that
K∨∗ (PS0) = Zp[Qs x0 : s > 0]p̂
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is a subalgebra of
K∨∗ (PCf ) = Zp[Qs x0,Q

s x2m : s > 0]p̂,

and the spectral sequence has

E2
0,∗ = K∗ ⊗K∨∗ (PS0) K

∨
∗ (PCf ) = Zp[Qs x2m : s > 0]p̂, E2

r,∗ = 0 (r > 1).

This discussion establishes

Proposition 4.2. We have
K∨∗ (S//f) = Zp[Qs x2m : s > 0]p̂.

Provided we know the coaction for K∨∗ (Cf ), that for K∨∗ (S//f) follows formally. In general we
have only the following possible form of coaction,

Ψ(x2m) = wm ⊗ x2m + c(f)(1− wm),

where c(f) is a certain kind of rational number. Then

Ψ(Qs x2m) = Qs(Ψx2m)

which involves iterated application of Q.

5 Some examples based on elements of Hopf invariant 1

Throughout this section we assume that p = 2.
We will consider the examples S//η and S//ν previously discussed in [9]. Similar considerations

apply to other examples constructed using elements in the image of the J-homomorphism at an
arbitrary prime. In order to study these examples, it is necessary to determine the K∨0 K-coaction
on K∨0 (S//f). Our goal is to explain why the following algebraic results holds.

Theorem 5.1. There are continuous epimorphisms of 2-complete Z2-θ-algebras

K∨0 (S//η)→ K∨0 K, K∨0 (S//ν)→ K∨0 K,

where in each case the domain is a free θ-algebra. Moreover, these are induced by morphisms of
E∞ ring spectra S//η → K and S//ν → K.

Proof. We give the ingredients required for the case of η, the other being similar.
We will use the following elements Φs = Φs(w) (s > 0) of K∨0 K:

Φ0 =
(1− w)

2
, Φn =

(Φn−1 − Φ2
n−1)

2
(n > 1). (5.1)

By results of [4], K∨0 K has a topological basis consisting of the monomials

Φε00 Φε11 · · ·Φ
ε`
` (εi = 0, 1). (5.2)

If we view these as continuous functions on Z×2 , then for a 2-adic unit α expressed as

α = 1− (2a0 + 22a1 + · · ·+ 2r+1ar + · · · )
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with ar = 0, 1, in Z2 we have
Φr(α) ≡ ar (mod 2).

We also know that Q Φs = Φs+1, hence Φs = Qs Φ0.
In the case where f = η, we can take the generator x2 to have coaction

Ψ(x2) = Φ0 ⊗ 1 + w ⊗ x2 = Φ0 + wx2, (5.3)

where we suppress the tensor product symbols when the meaning seems clear without them. For
the coproduct in K∨0 K we have

ΨΦ0 = Φ0 ⊗ 1 + w ⊗ Φ0,

and also
Ψ Qx2 = wQx2 + wΦ0x

2
2 − wΦ0x2 + Φ1.

Without further calculation we see that there is a homomorphism of topological comodule algebras

Z2[x2]2̂ → K∨0 K; x2 7→ Φ0.

This is induced from a morphism of E∞ ring spectra S//η → K arising from the fact that the
composition of η : S1 → S with the unit S → K is null homotopic. Therefore there is an extension
to a continuous epimorphism

K∨0 (S//η)→ K∨0 K; Qs x2 7→ Φs.

This displays K∨0 K as a quotient of the free θ-algebra K∨0 (S//η) as in Proposition 3.1. q.e.d.

Theorem 5.2. There is a K(1)-local equivalence

S//η
∼−−→
∏
j>0

K.

Outline of Proof. We will use the homology theory K(1)∗(−), i.e., mod 2 K-theory. For the spectra
we are considering, odd degree groups are trivial so we can consider the ungraded F2-vector spaces
obtained from K(1)0(−). This functor takes values in the category of K(1)0(K)-comodules, where
K(1)0(K) ⊆ K(1)0(K(1)) is the subHopf algebra called the Morava stabiliser (Hopf) algebra and
often denoted (rather confusingly) K(1)0K(1) in the literature.

Using the basis of (5.2), we see that the group-like element w = 1 − 2Θ0 ∈ K∨0 (K) reduces
mod 2 to 1 and this is the only group-like element of K(1)0(K). The reductions mod 2 of this basis
give a basis for K(1)0(K) and the increasing coradical filtration FkK(1)0(K) (k > 0) defined by
Laures & Schuster [24, section 2] has

FkK(1)0(K) = F2{1,Φ0, . . . ,Φk−1}.
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The epimorphism K∨0 (S//η) → K∨0 (K) gives rise to a commutative diagram of K(1)0(K)-
comodule algebras of the following shape.

K(1)0(S//η)

Ψ

��

// //

����

K(1)0(K)

Ψ

��
K(1)0(K)⊗K(1)0(S//η) // //

counit⊗Id
����

K(1)0(K)⊗K(1)0(K)

counit⊗IdppppK(1)0(K) oo
∼= // F2 ⊗K(1)0(K)

The coaction for K(1)0(S//η) = F2[Qs : s > 0] is computable recursively, for example (5.3) gives

Ψ(x2) = Φ0 ⊗ 1 + 1⊗ x2.

and
Ψ(Qx2) = Φ1 ⊗ 1 + Φ0 ⊗ (x2 + x2

2) + 1⊗Qx2.

Now we can use an appropriate version of the classic Milnor-Moore Theorem of [27], see for
example Laures & Schuster [24, theorem 2.8], to deduce that

K(1)0(S//η) ∼= K(1)0(K)⊗ PrimK(1)0(K)K(1)0(S//η),

where PrimK(1)0(K)K(1)0(S//η) ⊆ K(1)0(S//η) is the subalgebra of primitives. To use this, we
need to determine filtration

FkK(1)0(S//η) = Ψ−1(FkK(1)0(K)⊗K(1)0(S//η)) (k > 0)

associated with the coradical filtration. By induction we find that

FkK(1)0(S//η) = F2[x2, . . . ,Q
k−1 x2].

We need to check the condition that the surjection K(1)0(S//η)→ K(1)0(K) is a ?-isomorphism as
in [24, definition 2.6] (note that as we are working with left comodules we need to consider graded
right primitives). Using an induction on k, we find that the k-graded right primitive subspace is
FkK(1)0(S//η) and this maps onto FkK(1)0(K) which is the k-graded right primitive subspace
of K(1)0(K).

Dualising and taking care with the inherent linearly compact topologies and completed tensor
products involved, we obtain an isomorphism of left topological K(1)0(K)-modules

K(1)0(S//η) ∼= K(1)0(K)⊗̂(PrimK(1)0(K)K(1)0(S//η))†,

where V † denotes the set of functionals supported on finite dimensional subspaces of the vector
space V . Choosing a topological basis {bα : α ∈ A} for (PrimK(1)0(K)K(1)0(S//η))†, we may lift

each bα to an element b̃α ∈ K0(S//η) since K(1)1(S//η) = 0. This gives a map S//η →
∏
α∈AK

which induces a K(1)-isomorphism, hence it is a K(1)-local equivalence. In fact A can be taken to
be countable, so we might as well index on the natural numbers. q.e.d.
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Notice that there is an E∞ morphism S//η → kU which induces a surjection on π∗(−) but
not on H∗(−;F2). Hence kU cannot be a retract of S//η 2-locally or after 2-completion. However,
multiplication by the Bott map induces a cofibre sequence

Σ2kU → kU → HZ

where KU ∧HZ is rational. Therefore Σ2kU → kU is a K(1)-local equivalence, so it induces an
isomorphism on K∨(−).

Notice that
w2 = (1− 2Φ0)2 = 1− 4(Φ0 − Φ2

0) = 1− 8Φ1,

so
1− w2 = 8Φ1.

Similarly,
w4 = 1− 16(Φ1 − Φ2

1) + 48Φ2
1,

and therefore
1− w4 = 16(Φ1 − Φ2

1)− 48Φ2
1 = 32Φ2 − 48Φ2

1.

Such identities allow us to describe the groups

Ext1,2n
K∗K

(K∗,K∗) = PrK2nK/(ηL − ηR)K2n

that detect the 2-primary part of image of the J-homomorphism through the e-invariant. Here Pr
denotes the subgroup of primitive elements which satisfy

Ψ(x) = 1⊗ x+ x⊗ 1,

and ηL, ηR denote the left and right units respectively. When n = 1, 2, 4, these groups are cyclic
with the following orders and generators:

• 2, generator represented by uΦ0;

• 8, generator represented by u2Φ1;

• 16, generator represented by u4(2Φ2 − 3Φ2
1).

Here we write u ∈ K2 for the Bott generator. In the first and last cases, a generator of (im J)2n−1

maps to the generator, but in the middle case only the multiples of 2u2Φ1 are hit; for details
see [26,28].

For S//ν and S//σ,

K∨0 (S//ν) = Z2[Qs x4 : s > 0]2̂, K∨0 (S//σ) = Z2[Qs x8 : s > 0]2̂,

we have the coactions

Ψx4 = w2 ⊗ x4 + 2Φ1, Ψx8 = w4 ⊗ x8 + 2Φ2 − 3Φ2
1.

Finally, we note that there is an E∞ morphism S//ν → kO inducing an epimorphism on
π∗(−) which is not an epimorphism on H∗(−;F2). The composition S//ν → kO → KO induces a
K(1)-local splitting whose proof is similar to that of Theorem 5.2.
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Theorem 5.3. There is a K(1)-local equivalence

S//ν
∼−−→
∏
j>0

Σ4ρ(j)KO,

for some numerical function ρ taking values in {0, 1}.

Remark 5.4. The case of S//σ should also be amenable to a similar analysis, however we have
not found convenient way to formalise an argument for this case.
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